2. Квантовое описание лазера


Квантовое описание лазера



Скачать 46.14 Kb.
страница2/5
Дата24.01.2018
Размер46.14 Kb.
Название файлалазер.docx
1   2   3   4   5
Квантовое описание лазера
Возбуждённая частица может перейти в менее энергетическое состояние самопроизвольно в результате спонтанного излучения, или, как его ещё называют, радиационного распада (рис. 1). Спонтанное излучение имеет чисто квантовую природу. Согласно квантовой механике атом или молекула не могут находиться в возбуждённом состоянии бесконечно долго. Возбуждённое состояние распадается с конечной скоростью, определяемой вероятностью этого перехода в единицу времени , испуская при этом квант света с энергией h0=2-1 А(2)А(1)+ h0 ( - коэффициент Эйнштейна для спонтанных переходов). Изменение концентрации частиц N2 на верхнем уровне в результате спонтанных переходов описывается выражением . Кванты света, родившиеся в результате спонтанных переходов обладают одинаковой энергией но никоим образом не связаны между собой. Направления распространения этих квантов в пространстве равновероятны. Так как рождение кванта может с равной вероятностью произойти в любой момент времени, электромагнитные волны, соответствующие этим квантам, не связаны между собой по фазе и имеют произвольную поляризацию.
В отличие от спонтанных переходов, способных происходить в изолированной частице, безизлучательные переходы возможны только при наличии взаимодействия частицы А с другой частицей или системой частиц В. В результате такого взаимодействия частица переходит из состояния 1 в состояние 2 или наоборот без излучения кванта света и без его участия. Процесс столкновительного возбуждения (рис.2) требует затраты кинетической энергии и протекает по схеме А(1)+ВА(2)+В. Процесс столкновительной релаксации на (рис.3) наоборот сопровождается переходом энергии в поступательную энергию взаимодействующих частиц либо тратится на возбуждение частицы В. Этот переход происходит по схеме A(2)+BA(1)+B+ . Индуцированные, или, как их иногда называют, вынужденные переходы в соответствии с гипотезой А. Эйнштейна могут происходить только при взаимодействии частицы А с резонансными квантами, удовлетворяющими условию h0=2-1 т.е вероятность индуцированных переходов отлична от нуля лишь во внешнем электромагнитном поле с резонансной частотой 0. А. Эйнштейн предположил, что при наличии поля резонансной частоты помимо переходов квантовой системы из состояния 1 в состояние 2, что соответствует резонансному поглощению квантов, протекающему по схеме А(1)+h0A(2) (рис.4) возможны переходы по схеме А(2)+h0А(1)+2h0 (рис.5). Данный процесс индуцирования или вынужденного излучения и служит основой квантовой электроники.
Однако энергия возбуждённых состояний не является фиксированной величиной даже в случае изолированной частицы. Согласно принципу неопределённости Гейзенберга неточность в определении энергии системы и времени её существования должна удовлетворять соотношению: . Поскольку 0 то неопределённость энергии возбуждённого состояния составляет . Такое энергетическое размытие уровней приводит к неопределённости частоты излучаемого кванта . Данное уширение частоты излучения называется естественная ширина линии и является минимально возможной. Естественная ширина линии резко растёт с ростом  (3) и становится заметной в коротковолновой части спектра. Для основного перехода молекулы СО2 лазера 05 сек и ширина 03*10-2 Гц. Однако обычно ширина линии излучения определяется не спонтанным излучением а релаксационными безизлучательными переходами, происходящими при взаимодействии возбуждённой частицы с другими частицами. Любой релаксационный процесс приводит к сокращению времени жизни частицы в возбуждённом состоянии, а следовательно, к уширению соответствующей этому состоянию линии излучения. Релаксационное уширение происходит за счёт безизлучательных процессом при столкновении частиц и этот процесс называют столкновительное уширение. По аналогии с естественный шириной линии, принимая cт - время жизни частицы в возбуждённом состоянии столкновительное уширенение определяется как . Время жизни частицы определяется через сечение этих процессов ст Как правило возбуждённая частица взаимодействует с различными частицами и в общем случае ст , где суммирование проводится по всем видам взаимодействующих частиц. Столкновительное и естественное уширение вызвано одной той же причиной – конечным временем жизни частицы в возбуждённом состоянии. Форма линии уширения в обоих случаях определяется особенностью вероятностных процессов и поэтому одинакова. Она имеет так называемый лоренцев контур, описываемый форм-фактором . Выражение нормировано на единицу: . Уширение линии, связанное с конечностью времени жизни возбуждённого состояния, принято называть однородным. В случае однородного уширения каждая возбуждённая частица при переходе излучает линию с полной шириной , спектральной формой и поглощает кванты с частотой, лежащей в пределах контура . При однородном уширении форма линии описывает спектральные характеристики каждой частицы и всех частиц в целом. Но конечное время жизни частиц не является единственной причиной уширения линий. Излучающие частицы находятся, как правило, в тепловом движении. В соответствии с эффектом Доплера частота, испускаемая движущимся источником колебаний, претерпевает смещение, пропорциональное скорости движения излучателя V. Смещение частоты зависит также от угла  между направлением движения и линией, соединяющей излучатель с приёмником и составляет . Так как излучающие частицы движутся с различными скоростями и в различных направлениях, то частотные сдвиги излучаемых ими линий различны. Поэтому даже в случае отсутствия столкновений неподвижный спектральный прибор будет регистрировать множество естественно уширенных линий, различно смещённых относительно частоты 0. Суперпозиция этих смещённых линий и даёт наблюдаемый профиль уширённой линии. Это так называемое доплеровское уширение линии является неоднородным. Каждая частица в описанной ситуации может излучать линию лишь в узком, определяемом естественным уширением, спектральном диапазоне, сдвинутом относительно 0 на конкретную величину, однозначно связанную со скоростью и направлением движения этой частицы. Естественно, что и поглощать излучение с фиксированной частотой смогут только те частицы, доплеровский сдвиг которых соответствует этой частоте. При максвелловском распределении излучающих частиц по скоростям где - средняя тепловая скорость; m - масса частицы. При этом линия излучения имеет гауссов профиль, описываемый форм-фактором . Аналогично с выражение нормировано на единицу .
В общем случае полная ширина линии излучения определяется всеми механизмами уширения. Однако в реальной ситуации чаще всего преобладающим является один. Это вызвано различным характером зависимости и от внешних условий. Так, например, в случае газовой излучающей среды линейно растёт с концентрацией частиц, а зависит только от температуры. Поэтому при малых давлениях уширение будет определяться доплеровским эффектом, а при больших - столкновениями. Спектральное распределение излучаемой линии имеет вид симметричной резонансной кривой с максимумом на частоте =0, спадающей до уровня половины максимальной интенсивности при частотах . Наличие уширения энергетических уровней и излучаемых линий, не влияя на интегральную частоту вынужденных переходов, приводит к уменьшению вероятности переходов с конкретной длиной волны. Т.к. линия излучения имеет спектральную форму q(), то вероятность спонтанного излучения с заданной частотой будет определяться полной вероятностью соответствующих переходов А12 и видом форм-фактора q() т.е. Wсп()=А21*q() где Wсп()- вероятность спонтанного излучения. Вероятности спонтанного и вынужденных переходов связаны между собой, поэтому вероятность индуцированных излучения с заданной частотой W21() также зависит от : W21()=B21*q()*V, B21 – коэффициент Эйнштейна для индуцированного излучения, – спектральная объёмная плотность излучения. Интегральная вероятность индуцированного излучения W21 при этом удовлетворяет условию . Для лоренцева вида линии форм-фактора такое интегрирование даёт , для гауссова , , - объёмная плотность излучения,  - дельта-функция. Сечение вынужденного фотоперехода для столкновительного уширения имеет вид: , для доплеровской формы линии , g1 – статистический вес уровня. Сечение вынужденного излучения 21=0*g1, вынужденного поглощения 12=0*g2. Процессы индуцированного излучения сопровождаются усилением электромагнитных волн. Пусть через среду, в которой частицы могут находиться в состояниях 1 и 2 с энергиями возбуждения 1 и 2 проходит поток монохроматического излучения удовлетворяющего соотношению h0=2-1. Пусть плотность частиц в этих состояниях N1 и N2. Уравнение баланса плотности фотонов в пучке имеет вид: где np – объёмная концентрация фотонов. . Величину называют коэффициентом активной среды. Интенсивность света будет усиливается по мере прохождения через среду с К>0. В противном случае при К<0 будет иметь место ослабление интенсивности изучения. Знак К определяется знаком выражения (N2*g1-N1*g2), называемого инверсией среды. Усиление среды положительно только лишь при (N2*g1-N1*g2)>0. В среде с термическим равновесием, где N1 и N2 подчиняются распределению Больцмана и где N2 всегда меньше N1, усиление света невозможно. Таким образом, усиление света может иметь место лишь при отсутствии термодинамического равновесия между уровнями 2 и 2, т.е. в неравновесной среде. Среду с N2*g1-N1*g2>0 называют средой с инверсной населённостью. Наилучшие условия резонансного излучения получаются при больших скоростях заселения и временах жизни верхнего уровня активных частиц и малых значениях этих величин для нижнего уровня. 


Поделитесь с Вашими друзьями:
1   2   3   4   5


База данных защищена авторским правом ©danovie.ru 2017
обратиться к администрации

    Главная страница