А. С. Попов основатель радиотехники


Александр Степанович Попов — основатель радиотехники



Скачать 190.95 Kb.
страница3/4
Дата25.06.2020
Размер190.95 Kb.
Название файлакурсач.docx
ТипРеферат
1   2   3   4
2. Александр Степанович Попов — основатель радиотехники

Учения об электромагнитном поле, которое послужило основой для создания радио, а затем и радиотехники в целом, до того, как нашло себе техническое применение, разрабатывались многими выдающимися учеными.

Еще Майкл Фарадей открыл явление электромагнитной индукции, законы электролиза, заложил основу современных представлении об электромагнитном поле. А 1832 ᴦ. он высказал мысль о том, что распространение электрической магнитной силы − явление колебательное и происходит с конечной скоростью.

Позже, Джеймс Клерк Максвелл в 1864 г. создал на базе учения Фарадея стройную математическую теорию электродинамики, объясняющую все известные в то время, а также многие открытые впоследствии электромагнитные явления. Он предсказал существование свободных электромагнитных волн, вычислил скорость их распространения (300 000 км/с) и выдвинул гипотезу о единстве природы световых и электрических колебаний и математически обосновал свои выводы. Максвелл утверждал, что видимые волны света являются только частным случаем электромагнитных волн, известным потому, что эти волны люди могут обнаруживать и искусственно создавать. Теория Максвелла была встречена с большим недоверием, но своей глубиной и теоретической завершенностью привлекла к себе внимание многих физиков.
Начались поиски способов экспериментального доказательств теории Максвелла. Затем, уже в 1888 г. Генрих Рудольф Герц экспериментально исследовавший свойства электромагнитных волн и блестяще подтвердивший теорию Максвелла. Он установил, что при разряде конденсатора через искровой промежуток действительно возбуждаются предсказанные Максвеллом электромагнитные волны, невидимые, но обладающие многими свойствами световых лучей. Герц разработал теорию излучения волн с помощью элементарного вибратора (вибратор Герца), которая легла в основу современной теории антенн.



Рис.1- Вибратор Герца

Через два года французский ученый Э. Бранли заметил, что в сфере действия волн Герца металлические порошки изменяют электрическую проводимость и восстанавливают ее только после встряхивания. Англичанин Оливер Лодж в 1894 году использовал прибор Бранли, названный им когерером, для обнаружения электромагнитных волн и снабдил его встряхивателем. Герц стремился получить с помощью искрового разрядника электромагнитные волны, возможно более близкие к видимым световым волнам, и ему удалось получить волны длиной 60 см. Последователи Герца, пользуясь электрическими способами возбуждения колебаний, шли по пути увеличения длины волны, тогда как многие русские и зарубежные физики (П. Н. Лебедев, А. Риги, Г. Рубенс, А. А. Глаголева-Аркадьева, М. А. Левитская и др.) в своих работах шли от световых волн на смыкание с радиоволнами.


Рис.2- Когерер

При всех этих научных открытиях, никто из вышеперечисленных учёных не ставил перед собой задачу практического использования электромагнитных волн.



Впервые, практическое применение электромагнитные волны получили в экспериментах нашего соотечественника Александра Степановича Попова. Будучи преподавателем физики в кронштадтском Минном офицерском классе и в Минной школе, которые имели первоклассное оборудование для ведения научно- исследовательской деятельности, Александр Попов начинает работу над практическим применением электромагнитных волн. Именно здесь, в стенах физического кабинета Минного офицерского класса, родилось и начало свой победный путь величайшее достижение мировой науки и техники — радиосвязь.
7 мая 1895 года в ученых кругах Петербурга произошло событие, которое сразу не привлекло к себе особого внимания, но практически было началом одного из величайших в мире технических открытий. Этим событием явился доклад А. С. Попова, преподавателя физики в Минном офицерском классе Кронштадта, «Об отношении металлических порошков к электрическим колебаниям». Заканчивая доклад, Александр Степанович сказал: «В заключение могу выразить надежду, что мой прибор, при дальнейшем усовершенствовании его, может быть применен к передаче сигналов на расстояния при помощи быстрых электрических колебаний, как только будет найден источник таких колебаний, обладающих достаточной энергией». Дата этого доклада признана теперь днем рождения радио.
Первым корреспондентом А. С. Попова в его опытах по осуществлению радиосвязи была сама природа — разряды молний. Первый радиоприемник А. С. Попова, а также изготовленный им летом 1895 года «грозоотметчик» могли обнаруживать очень дальние грозы. Это обстоятельство и навело А. С. Попова на мысль, что электромагнитные волны можно обнаружить при любой дальности источника их возбуждения, если источник обладает достаточной мощностью. Такое заключение дало Попову право говорить о передаче сигналов на дальнее расстояние без проводов.
В качестве источника колебаний в своих опытах А. С. Попов пользовался герцевским вибратором, приспособив для его возбуждения давно известный физический инструмент — катушку Румкорфа. Будучи замечательным экспериментатором, своими руками изготовляя всю необходимую аппаратуру, Попов усовершенствовал приборы своих предшественников. Однако решающее значение имело то, что Попов к этим приборам присоединил вертикальный провод — первую в мире антенну и таким образом полностью разработал основную идею и аппаратуру для радиотелеграфной связи. Так возникла связь без проводов с помощью электромагнитных волн, так в изобретении А. С. Попова зародилась современная радиотехника.

Рис. 3- Эскизный чертёж приёмника А.С. Попова

Еще в январе 1896 года в статье А. С. Попова, опубликованной в «Журнале Русского физико-химического общества», были приведены схемы и подробное описание принципа действия первого в мире радиоприемника. А в марте изобретатель продемонстрировал передачу сигналов без проводов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц». В том же году в опытах на кораблях была достигнута дальность радиосвязи сначала на расстояние около 640 м, а вскоре и на 5 км.


Позже, в июне 1896 года итальянец Г. Маркони сделал в Англии патентную заявку на аналогичное изобретение, но сведения об его опытах и приборах беспроволочного телеграфирования были опубликованы лишь через год — в июне 1897 года.
Умелая реклама, большой интерес Англии к возможностям осуществления связи без проводов позволили Маркони в 1897 году основать специальную фирму («Компания беспроволочного телеграфа и сигнализации»). Дальность радиосвязи в это время в опытах Маркони не превосходила дальности, достигнутой Поповым.
В 1898 году А. С. Попов добился уже радиосвязи на 11 км и, заинтересовав своими опытами Морское министерство, организовал даже небольшое производство своих приборов в мастерских лейтенанта Колбасьева и у парижского механика Дюкрете, который в дальнейшем стал главным поставщиком его приборов.
Когда в ноябре 1899 года у острова Гогланд сел на мель броненосец «Генерал-адмирал Апраксин», то по поручению Морского министерства Попов организовал первую в мире практическую радиосвязь. Между г. Котка и броненосцем на расстоянии около 50 км в течение трех месяцев было передано свыше 400 радиограмм.
После успешной работы радиолинии Гогланд — Котка, Морское министерство первым в мире приняло решение о вооружении всех судов русского военно-морского флота радиотелеграфом как средством постоянного вооружения. Под руководством Попова началось изготовление радиоаппаратуры для вооружения кораблей. Одновременно с этим А. С. Попов создал первые армейские полевые радиостанции и провел опыты по радиосвязи в Каспийском пехотном полку. В мастерской кронштадтского порта, организованной А. С. Поповым в 1900 году, были изготовлены радиостанции для вооружения мерных кораблей (крейсер «Поник», линкор «Пересвет» и др.), отправляемых на Дальний Восток для укрепления 1-й Тихоокеанской эскадры.
Работы А. С. Попова имели большое значение для последующего развития радиотехники. Изучая результаты опытов на Балтике в 1897 году по прекращению связи между кораблями «Европа» и «Африка» в моменты прохождения между ними крейсера «Лейтенант Ильин», Попов пришел к заключению о возможности с помощью радиоволн обнаруживать металлические массы, то есть к идее современной радиолокации.
Попов уделял большое внимание применению полупроводников в радиотехнике, настойчиво изучая роль проводимостей окислов в когерерах. В 1900 году он разработал детектор с парой уголь — сталь.
В 1902 году А. С. Попов говорил своему ученику В. И. Коваленкову: «Мы находимся накануне практического осуществления радиотелефонии, как важнейшей отрасли радио», и рекомендовал ему заняться разработкой возбудителя незатухающих колебанию. Через год (в 1903—1904 годах) в лаборатории Попова уже были поставлены опыты радиотелефонирования, демонстрировавшиеся в феврале 1904 года на III Всероссийском электротехническом съезде.


За кратковременную деятельность и области радиотехники (менее 10 лет) А. С. Попов добился очень больших результатов, использовав все достижения физики своего времени. Понадобились долгие годы и соединенные усилия многих ученых и инженеров, чтобы развить изобретение А. С. Попова и довести его до того расцвета, свидетелями которого мы являемся теперь. Всю эту огромную работу можно рассматривать как историю овладения человеком спектром радиоволн, начало которому положили труды А. С. Попова.
Эта работа шла в нескольких направлениях, на первых порах трудно отделимых одно от другого, но постепенно выросших в самостоятельные отрасли. Одновременно велись: 1) разработка способов и техники возбуждения слабо затухающих, а затем и незатухающих колебаний, 2) совершенствовались средства обнаружения и выделения колебаний, 3) разрабатывались конструкции антенн, 4) совершенствовались способы воспроизведения и обработки передаваемой информации.
Чем же располагал А. С. Попов, когда он прокладывал первые пути в изучении этого океана электрических волн? Он работал на волнах, которые в настоящее время называют промежуточными. Применение антенны позволило ему увеличить дальность действия своей аппаратуры, но при этом пришлось отойти от тех волн (метровые и дециметровые), на которых работал Герц. Искровой промежуток Попов включал в передающую антенну, и она возбуждалась на собственной длине волны. Поскольку собственная длина, волны вертикального заземленного вибратора-антенны А. С. Попова равна приблизительно учетверенной высоте, антенну старались поднять возможно выше, чтобы увеличить дальность связи. В итоге рабочая длина волны стала измеряться сначала десятками, а затем и сотнями метров.
Для осуществления связи А. С. Попов применял искровые передатчики с редкой искрой и сильным затуханием колебаний и приемники с когерером и первыми образцами полупроводниковых детекторов. Располагая столь скудной аппаратурой, А. С. Попов тем не менее наметил обширный план дальнейшего развития радио: радиотелефонию, радиообнаружение, открыл ограничивающее действие помех и суточный неравномерный ход силы принимаемых сигналов. Теорию четвертьволнового вибратора А. С. Попов доложил на I Всероссийском электротехническом съезде 29 декабря 1899 года. Описывая работы по спасению броненосца «Генерал-адмирал Апраксин», А. С. Попов особо отметил в докладе: «Два дня совершенно нельзя было работать от действия атмосферного электричества...». Выдвинутая им задача борьбы за помехоустойчивость радиосвязи остается и теперь одной из главных задач радиотехники.
О втором наблюдении Попова мы узнаем из воспоминаний одного из его современников В. М. Лебедева: «Надо заметить, что уже тогда А. С. знал о значительном улучшении радиосвязи в ночное время, хотя объяснений пока еще и не имел, и поэтому все новые опыты производились исключительно ночью». Таким образом, А. С. Попов установил зависимость дальности радиосвязи от времени суток и открыл ослабление атмосферных разрядов ближе к рассвету.
Эти наблюдения не соответствовали господствовавшей теории распространения, привязывавшей радиоволны к земной поверхности. Они свидетельствовали о необходимости исследований верхней атмосферы земли, которая только и могла объяснить суточные изменения силы сигналов. Однако на эти наблюдения А. С. Попова было обращено очень мало внимания и исследование их началось гораздо позже.
Предложенный помощником Попова П. Н. Рыбкиным слуховой метод приема радиосигналов на телефонные трубки получил всеобщее признание, так как позволял отличать сигналы от помех, увеличивал дальность связи. Существенной помощью в борьбе с атмосферными помехами было появление в 1906—1909 годах передатчиков с частой искрой и с малым затуханием колебаний. Такие передатчики создавали тональное звучание сигналов, так как музыкальный тон сигналов облегчал выделение их среди помех.
В 1909—1910 годах определился тип искровых радиостанций, в которых применялись искровые разрядники вращающиеся или дисковые многократные. Прием сигналов производился только на телефонные трубки с помощью кристаллического детектора. Эта почти стабилизовавшаяся аппаратура без существенных изменений продержалась всю первую мировую войну, хотя уже имелись и радиостанции незатухающих колебаний, а в приемной аппаратуре в ряде случаев применялись и электронные лампы в качестве усилителей.
Отличительной особенностью этого периода было стремление западных государств организовать свои стратегические системы дальней радиосвязи. В России также шло подобное радиостроительство. В 1910 году была осуществлена сеть стратегической радиосвязи, которая связывала Бобруйск с побережьем Балтики, Черного моря и группой радиостанций вдоль западной границы. На Дальнем Востоке были построены радиостанции, соединявшие Хабаровск с Харбином, Николаевском-на-Амуре, Владивостоком и Петропавловском-на-Камчатке. Группа радиостанций воздвигалась вдоль северного побережья России. Предусматривалось также строительство радиостанций в Москве для связи с Баку, Ташкентом и Бобруйском. Кроме того, Москва через Ташкент связывалась с Кушкой на границе Афганистана и через Баку с Ашхабадом и Карсом. Наконец, намечалось построить транссибирскую линию радиосвязи Москва — Хабаровск с установкой ретрансляционных станций в Уржумке, Красноярске и Чите. Таким образом, предполагалось, что к предстоящей войне будет готова необходимая стратегическая радиосеть. Но осуществить все намеченное радиостроительство полностью не удалось, и некоторые радиостанции спешно достраивались во время войны 1914—1918 годов.
Система внутренней радиосвязи России, однако, не имела выхода в Западную Европу. Международные связи России обслуживали иностранные концессионные компании проволочного телеграфа—Северо-Датская и Индо-Европейская, входившие в сеть английской мировой кабельной связи. Между тем подготовка к мировой войне требовала организации собственной прямой международной радиосвязи с будущим союзниками. Осуществить эту задачу собственными силам Россия была не в состоянии. Сказалось отсутствие собственной научно-исследовательской базы, которая могла бы развивать радиотехнику независимо от иностранных фирм.
Временная стабильность искровой радиотехники, достигнутая к 1908—1909 годах за счет применения многократных и вращающихся разрядников, оказалась недолговечной: наступала эпоха незатухающих колебаний, переход к которым должен был явиться радикальным поворотом в направлении развития радиотехники и прежде всего в области дальней радиосвязи, для которой, как тогда считали, нужны очень длинные полны.
Начали строиться длинноволновые сверхмощные радиостанции с огромными антеннами, подвешиваемыми на 200— 250-метровых мачтах и башнях. Станции стоили 5—10 миллионов рублей, и строить их было под силу только большим электротехническим предприятиям. Передатчики со звучащей искрой уже не годились для таких мощных станций, как ни отстаивала это направление фирма Маркони. Место искровой техники стали занимать дуговые и машинные генераторы незатухающих колебаний.
Переход на работу незатухающими колебаниями явился очередным этапом развития радиотехники. Дуговые генераторы были разработаны сначала в Европе, а машины высокой частоты появились впервые в США. Несколько позже в России машины высокой частоты начал изготовлять В. П. Вологднн на заводе Дюфлон в Петербурге.
Межконтинентальные мощные радиостанции строились для работы на волнах длиной 20—30 км и были оборудованы машинами высокой частоты и дугами. Тогда еще никто не мог представить себе, что новые мощные, великолепно оборудованные радиостанции-гиганты на самом деле представляют собой в принципе порочное направление развития радиотехники и в недалеком будущем от них придется отказаться. Но это выяснилось позднее, а в годы перед первой мировой войной и во время нее шло ожесточенное соревнование между Германией и Англией (фирмы «Телефункен» и Маркони) в области строительства длинноволновых радиоцентров. Однако фирма Маркони опиралась на быстро стареющие искровые радиостанции, тогда как германская фирма «Телефункен», купив патенты на дугу и машину, выступала с более прогрессивными системами высокочастотных генераторов. В 1912 году фирмы договорились о разделе сфер влияния: «Телефункен» получает рынки южного полушария, фирма Маркони — северного, но борьба продолжалась в скрытой форме.
Объявленная в 1914 году война прервала все переговоры и еще более обнажила глубокие противоречия, давно назревшие в русской радиотехнике. В России не было лабораторной базы, не было национальной радиопромышленности, и правительство не стремилось создавать ее, предпочитая привычные и удобные заказы иностранным фирмам. Эти фирмы и подавно не намеревались развивать в России научно-исследовательскую деятельность. Они импортировали «новинки» из своих заграничных лабораторий, сбывали в Россию устаревшую аппаратуру, стремясь использовать русских радиоспециалистов только как исполнителей, установщиков, монтажеров.
Между тем, ученики А. С. Попова продолжали подготовку кадров радиоспециалистов. Их выпускали два высших военных училища — Офицерская электротехническая школа в Петербурге и Минный офицерский класс в Кронштадте, а также Петербургский электротехнический институт. Русские инженеры работали на радиотелеграфном заводе Морского ведомства, служили во флоте, на радиостанциях почтового ведомства и в армейских радиодивизионах.
Такое прогрессивное начинание, как организация русского радиотелеграфного завода Морского ведомства, проложило себе дорогу, несмотря на многочисленные препятстви. Война, нарушив эти связи, активизировала русских радиоспециалистов. В условиях старой России это оживление могло быть только временным, так как царское правительство не намеревалось менять свое отношение к отечественной промышленности и закрывать доступ на русский рынок иностранным фирмам. Продолжал даже работать, не будучи национализированным, завод немецкой фирмы «СнменсТальекс», так как он именовался «русским»,
В годы первой мировой войны в радиотехнике начался один из тех редких технических переворотов, которые на первых порах ничем не примечательны. Этот переворот в радиотехнике был произведен электронной лампой.
Впервые такую лампу с двумя электродами — накаленной нитью и анодом — предложил в 1904 году английский ученый Флеминг как новый прибор для детектирования электромагнитных волн. Истинные возможности электронной лампы были открыты лишь в 1906 году, когда американский инженер Ли де Форест ввел в нее третий электрод — управляющую сетку. Такая лампа могла уже работать в качестве усилителя слабых колебаний, а затем (с 1913 года) и в качестве возбудителя (генератора) незатухающих колебаний.
Во время войны на Тверской военной радиостанции группа военных радиоинженеров (В. М. Лещинский, М. А. Бонч-Бруевич, П. А. Остряков) с помощью ученика Попова профессора В. К. Лебединского начали изготовлять отечественные радиолампы и строить приемники для приема незатухающих колебаний. Применение электронных ламп как бы открыло окно в стене: зазвучали отдаленнейшие станции, прием которых оказался возможным благодаря усилению слабых сигналов электронной лампой. Маленький генератор с электронной лампой (гетеродин) упростил задачу приема незатухающих колебаний.
Все же появление электронных ламп вначале не сказалось на направлении развития дальней радиосвязи. Во время войны стало ясно, что проволочные и кабельные линии очень непрочны, поэтому после первой мировой войны фирмы многих государств возобновили строительство мощных машинных и дуговых радиостанций.
В таком состоянии радиотелеграфная связь находилась до Октябрьской революции. После революции и окончания первой мировой и гражданской войн началось развитие радиотехники на базе электронных приборов. Это соединение изобретения Попова с электроникой дало возможность осуществить массовое радиовещание, кругосветную радиосвязь и ряд новых видов радиосвязи.

Скачать 190.95 Kb.

Поделитесь с Вашими друзьями:
1   2   3   4




База данных защищена авторским правом ©danovie.ru 2020
обратиться к администрации

    Главная страница