Ипк издательство стандартов



страница18/41
Дата16.06.2020
Размер2.34 Mb.
Название файлаГОСТ Р 12.3.047-98Пожар.безоп.техн.проц..doc
1   ...   14   15   16   17   18   19   20   21   ...   41
Н - высота падения, м.

Объем капли металла (Vк), м3, вычисляют по формуле



(74)

где dk - диаметр капли, м.



Массу капли (mk), кг, вычисляют по формуле

(75)

где r - плотность металла, кг×м-1.

В зависимости от продолжительности полета капли возможны три ее состояния: жидкое, кристаллизации, твердое.

Время полета капли в расплавленном (жидком) состоянии (tp), с, рассчитывают по формуле



(76)

где Cp - удельная теплоемкость расплава металла, Дж×к-1К-1;



mk - масса капли, кг;

Sk=0,785 d2k - площадь поверхности капли, м2;

Тн, Тпл - температура капли в начале полета и температура плавления металла соответственно, К;

Т0 - температура окружающей среды (воздуха), К;

a - коэффициент теплоотдачи, Вт, м-2 К-1.

Коэффициент теплоотдачи определяют в следующей последовательности:



а) вычисляют число Рейнольдса по формуле

(77)

где dk - диаметр капли м;

v=l5,1×10-6 - коэффициент кинематической вязкости воздуха при температуре 20°С, м-2×с-1.

б) вычисляют критерий Нуссельта по формуле



(78)

в) вычисляют коэффициент теплоотдачи по формуле



, (79)

где lв=22×10-6 - коэффициент теплопроводности воздуха, Вт×м-1× -К-1.



Если t£tр, то конечную температуру капли определяют по формуле

(80)

Время полета капли, в течение которого происходит ее кристаллизация, определяют по формуле



(81)

где Скр - удельная теплота кристаллизации металла, Дж×кг-1.



Если tрp+tкр), то конечную температуру капли определяют по формуле

(82)

Если t>(tр+tкр), то конечную температуру капли в твердом состоянии определяют по формуле



(83)

где Ск - удельная теплоемкость металла, Дж×кг-1×K-1.



Количество тепла (W), Дж, отдаваемое каплей металла твердому или жидкому горючему материалу, на который она попала, вычисляют по формуле

(84)

где Тсв - температура самовоспламенения горючего материала, К;



К - коэффициент, равный отношению тепла, отданного горючему веществу, к энергии, запасенной в капле.

Если отсутствует возможность определения коэффициента К, то принимают К=1.

Более строгое определение конечной температуры капли может быть проведено при учете зависимости коэффициента теплоотдачи от температуры.

5.1.2.3. Электрические лампы накаливания общего назначения



Пожарная опасность светильников обусловлена возможностью контакта горючей среды с колбой электрической лампы накаливания, нагретой выше температуры самовоспламенения горючей среды.

Черт. 3


Температура нагрева колбы электрической лампочки зависит от мощности лампы, ее размеров и расположения в пространстве. Зависимость максимальной температуры на колбе горизонтально расположенной лампы от ее мощности и времени приведена на черт. 3.

5.1.2.4. Искры статического электричества



Энергию искры (Wи), Дж, способной возникнуть под действием напряжения между пластиной и каким-либо заземленным предметом, вычисляют по запасенной конденсатором энергии из формулы

(85)

где С - емкость конденсатора, Ф;



U - напряжение, В.

Разность потенциалов между заряженным телом и землей измеряют электрометрами в реальных условиях производства.



Черт. 4


Если Wн³0,4 Wм.э.з ( Wм.э.з - минимальная энергия зажигания среды), то искру статического электричества рассматривают как источник зажигания.

Реальную опасность представляет «контактная» электризация людей, работающих с движущимися диэлектрическими материалами. При соприкосновении человека с заземленным предметом возникают искры с энергией от 2,5 до 7,5 мДж. Зависимость энергии электрического разряда с тела человека и от потенциала зарядов статического электричества показана на черт. 4.

5.1.3. Механические (фрикционные) искры (искры от удара и трения)

Размеры искр удара и трения, которые представляют собой раскаленную до свечения частичку металла или камня, обычно не превышают 0,5 мм, а их температура находится в пределах температуры плавления металла. Температура искр, образующихся при соударении металлов, способных вступать в химическое взаимодействие друг с другом с выделением значительного количества тепла, может превышать температуру плавления и поэтому ее определяют экспериментально или расчетом.

Количество теплоты, отдаваемое искрой при охлаждении от начальной температуры tн до температуры самовоспламенения горючей среды tсв вычисляют по формуле (84), а время остывания t - следующим образом.

Отношение температур (Qп) вычисляют по формуле



(86)

где tв - температура воздуха, °С.



Коэффициент теплоотдачи (a), Вт×м-2×К-1, вычисляют по формуле

(87)

где wи - скорость полета искры, м×с-1.



Скорость искры (wи), образующейся при ударе свободно падающего тела, вычисляют по формуле

(88)

а при ударе о вращающееся тело по формуле



(89)

где n - частота вращения, с-1;

R - радиус вращающегося тела, м.

Скорость полета искр, образующихся при работе с ударным инструментом, принимают равной 16 м×с-1, а с высекаемых при ходьбе в обуви, подбитой металлическими набойками или гвоздями, 12 м×с-1.



Критерий Био вычисляют по формуле

(90)

где dи - диаметр искры, м;

lи - коэффициент теплопроводности металла искры при температуре самовоспламенения горючего вещества (tсв), Bт×м-1×K-1.

По значениям относительной избыточной температуры qп и критерия Вi определяют по графику (черт. 5) критерий Фурье



Черт. 5


Длительность остывания частицы металла (t), с, вычисляют по формуле

(91)

где F0 - критерий Фурье;

Си - теплоемкость металла искры при температуре самовоспламенения горючего вещества, Дж×кг-1×К-1;

rи - плотность металла искры при температуре самовоспламенения горючего вещества, кг×м-3.

При наличии экспериментальных данных о поджигающей способности фрикционных искр вывод об их опасности для анализируемой горючей среды допускается делать без проведения расчетов.

5.1.4. Открытое пламя и искры двигателей (печей)

Пожарная опасность пламени обусловлена интенсивностью теплового воздействия (плотностью теплового потока), площадью воздействия, ориентацией (взаимным расположением), периодичностью и временем его воздействия на горючие вещества. Плотность теплового потока диффузионных пламен (спички, свечи, газовой горелки) составляет 18-40 кВт×м-2, а предварительно перемешанных (паяльные лампы, газовые горелки) 60-140 кВт×м-2 В табл. 6 приведены температурные и временные характеристики некоторых пламен и малокалорийных источников тепла.

Таблица 6



Наименование горящего вещества (изделия) или пожароопасной операции

Температура пламени (тления или нагрева), оС

Время горения (тления), мин

Легковоспламеняющиеся и горючие жидкости

880

-

Древесина и лесопиломатериалы

1000

-

Природные и сжиженные газы

1200

-

Газовая сварка металла

3150

-

Газовая резка металла

1350

-

Тлеющая папироса

320-410

2-2,5

Тлеющая сигарета

420-460

26-30

Горящая спичка

600-640

0,33

Открытое пламя опасно не только при непосредственном контакте с горючей средой, но и при ее облучении. Интенсивность облучения (gр), Вт×м-2, вычисляют по формуле

(92)

где 5,7 - коэффициент излучения абсолютно черного тела, Вт×м-2×К-4;



eпр - приведенная степень черноты системы

(93)

eф - степень черноты факела (при горении дерева равна 0,7, нефтепродуктов 0,85);

eв - степень черноты облучаемого вещества принимают по справочной литературе;



Поделитесь с Вашими друзьями:
1   ...   14   15   16   17   18   19   20   21   ...   41




База данных защищена авторским правом ©danovie.ru 2020
обратиться к администрации

    Главная страница